Part I Questions

1. When drawn in standard position, which of the following angles is coterminal with 215° ?
(1) -215°
(3) 595°
(2) -505°
(4) 915°
Angle that are coterminal will differ
by integer multiples of 360° :
$215^{\circ}-360^{\circ}-360^{\circ}=-505^{\circ}$
(2)
2. Which of the following angles, in radians, is equivalent to 285° ?
(1) $\frac{19 \pi}{12}$
(3) $\frac{65 \pi}{57}$
(2) $\frac{17 \pi}{15}$
(4) $\frac{16 \pi}{15}$

$$
285^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{(285 \div 15) \pi}{180 \div 15}=\frac{19 \pi}{12}
$$

3. Point A lies on the unit circle at an angle of 288° as shown in the diagram. Which of the following is the y coordinate of point A ?
(1) -0.31
(2) -0.63
(3) -0.86
(4) -0.95

4. An angle θ drawn in standard position terminates in the second quadrant. If $\sin \theta=\frac{4}{7}$, then which of the following is the value of $\cos \theta$?
(1) $-\frac{\sqrt{33}}{7}$
(3) $-\frac{3}{7}$
(2) $-\frac{\sqrt{33}}{4}$
(4) $\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \cos ^{2} \theta+\left(\frac{4}{7}\right)^{2}=1 \\
& \cos ^{2} \theta+\frac{16}{49}=1 \\
& \cos ^{2} \theta=\frac{33}{49} \Rightarrow \cos \theta= \pm \sqrt{\frac{33}{49}}= \pm \frac{\sqrt{33}}{7} \\
& \cos \theta=-\frac{\sqrt{33}}{7} \text { since cosine is negative in II }
\end{aligned}
$$

5. On a cosine function $y=A \cos (B x)+C$, the maximum value is 32 and the minimum value is -4 . Which of the following must be the value of $|A|-C$?
(1) -4
(3) -3
(2) 8
(4) 4

$$
\begin{aligned}
& |A|=\frac{32-(-4)}{2}=\frac{36}{2}=18 \\
& C=\frac{32+-4}{2}=\frac{28}{2}=14 \\
& |A|-C=18-14=4
\end{aligned}
$$

6. The graph of $y=k \cos \left(\frac{\pi}{4} x\right)$ is shown below for unknown constant k. What is the x-coordinate of point A shown marked on the diagram?
(1) $\frac{3 k}{4}$
(2) π
(3) $\frac{\pi k}{2}$
(4) 4

$$
\begin{aligned}
& \frac{\pi}{4} P=2 \pi \\
& P=2 \pi \cdot \frac{4}{\pi}=8 \\
& x-\text { coord }=\frac{1}{2} P=4
\end{aligned}
$$

7. The distance, h, in feet above the ground of a point on the circular frame of a Ferris Wheel is given by $h=42 \cos (12 t)+46$, where t is the number of seconds since the wheel started turning. The diameter of the wheel is
(1) 42
(3) 84
(2) 46
(4) 88

$$
\text { Diameter }=2 A=2(42)=84
$$

$$
\begin{gathered}
\text { or } \\
h_{\max }=46+42=88 \\
h_{\min }=46-42=4
\end{gathered}
$$

$$
\text { Diameter }=88-4=84
$$

8. At which of the following angles is the secant function undefined?
(1) 90°
(3) 240°
(2) 180°
(4) 330°
$\sec A=\frac{1}{\cos A}$
$\cos 90^{\circ}=0$
$\sec 90^{\circ}$ is undefined
9. If $0 \leq \theta \leq 90^{\circ}$ and $\sin (\theta)=p$, then which of the following gives the value of $\tan (\theta)$?
(1) $\frac{p}{1-p}$
(3) $\frac{p}{\sqrt{1-p^{2}}}$
(2) $\frac{\sqrt{1-p^{2}}}{p}$
(4) $\sqrt{1-p^{2}}$
$\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}$
$\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$
$\cos (\theta)=\sqrt{1-\sin ^{2}(\theta)}$

$$
\begin{align*}
& \sin (\theta)=p \tag{3}\\
& \cos (\theta)=\sqrt{1-p^{2}} \\
& \tan (\theta)=\frac{p}{\sqrt{1-p^{2}}} \\
& \hline
\end{align*}
$$

Part II Questions: Answer all questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps and explain your reasoning. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit.
10. In the circle shown graphed below, an 18 inch arc is traced from point A to point B such that a radian angle of 2.5 is rotated through. What is the radius of the circle in inches?

$$
\begin{aligned}
& \theta=\frac{s}{r} \Rightarrow 2.5=\frac{18}{r} \Rightarrow 2.5 r=18 \\
& r=\frac{18}{2.5}=7.2
\end{aligned}
$$

11. Point B has coordinates $(7,-24)$ and lies on the circle whose equation is $x^{2}+y^{2}=625$. If an angle is drawn in standard position with its terminal ray extending through point B, what is the sine of the angle?

$$
\sin A=\frac{y-\text { coord }}{\text { radius }}=\frac{-24}{\sqrt{625}}=-\frac{24}{25} \text { or }-0.96
$$

12. For angle A it is known that $\sin (A)>0$ and $\tan (A)<0$. If A is drawn in standard position, in which quadrant does its terminal ray lie?

$$
\sin (A)>0 \Rightarrow \angle A \text { must be in Quads I or II }
$$

$\tan (A)<0 \Rightarrow \angle A$ must be in Quads II or IV

13. The function $y=-6 \sin (x)+C$ has a maximum value of 10 . What is its minimum value? Explain your answer.

We can find the value of C by using the maximum and the amplitude, $\|A\|$.

14. Roger is on a playground swing, and he is swinging back and forth in such a way that the height, h, in feet, of the swing off the ground is given by the equation $h=3 \cos \left(\frac{3 \pi}{2} t\right)+5$, where t is in seconds. How many seconds elapses between two consecutive times that the swing is at its maximum height?

In this question we need to find the period of the function.

$$
\begin{aligned}
& P=2 \not t \cdot \frac{2}{3 \not \hbar t} \\
& P=\frac{4}{3} \text { seconds }
\end{aligned}
$$

Part III Questions: Answer all questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps and explain your reasoning. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit.
15. Given the graph of $y=A \cos (B x)+C$ shown below and the two points marked, determine the values of A, B, and C. Show how you arrived at your answers.

$$
\begin{aligned}
& A=\frac{16-4}{2}=\frac{12}{2}=6 \\
& C=\frac{4+16}{2}=\frac{20}{2}=10
\end{aligned}
$$

$$
\begin{aligned}
& P=8 \pi \\
& 8 \pi B=2 \pi \\
& B=\frac{2 \pi}{8 \pi}=\frac{1}{4}
\end{aligned}
$$

16. If $90^{\circ} \leq \theta \leq 180^{\circ}$ and $\sin (\theta)=\frac{5}{12}$ then determine the exact values of $\cos (\theta)$ and $\tan (\theta)$.

$$
\begin{aligned}
& \cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \\
& \cos ^{2}(\theta)+\left(\frac{5}{12}\right)^{2}=1 \\
& \cos ^{2}(\theta)+\frac{25}{144}=1 \\
& \cos ^{2}(\theta)=1-\frac{25}{144} \\
& \cos ^{2}(\theta)=\frac{119}{144}
\end{aligned} \quad \begin{aligned}
& \cos (\theta)= \pm \sqrt{\frac{119}{144}}= \pm \frac{\sqrt{119}}{12} \\
& \cos (\theta)=-\frac{\sqrt{119}}{12} \\
& \cos (\theta)<0 \text { since } \theta \text { is in Quad II }
\end{aligned} \quad \begin{aligned}
& \tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{5 / 12}{-\sqrt{119} / 12} \\
& \tan (\theta)=-\frac{5}{\sqrt{119}} \text { or } \\
& \tan (\theta)=-\frac{5 \sqrt{119}}{119}
\end{aligned}
$$

17. The temperature inside a parked car in a long-term parking lot, in degrees Fahrenheit, can be modeled using the equation $F(t)=-28 \cos \left(\frac{\pi}{12} t\right)+84$, where t is the number of hours since 3:00 a.m.
(a) Determine the maximum inside temperature of the car. Explain how you arrived at your answer.

The maximum will simply be the amplitude, 28 , added to the midline value, 84 .

(b) At what time of day does the inside temperature of the car attain its maximum? Explain how you arrived at your answer.

The maximum will be a halfperiod past the minimum, where the curve starts at 3:00 a.m. So we first find the period, P.
$\left[\begin{array}{l}\frac{\pi}{12} P=2 \pi \\ P=2 \pi \cdot \frac{12}{\pi}=24 \text { hours }\end{array}\right]$

So, the maximum is reached 12 hours after 3:00 am so it must occur at 3 p.m.

